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THE GENERALIZED SIMPLE WAVEl

by

-
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D, liaylor

Introduction. An important exact solution in the aero-
dynamics of steady, perfec¢t and irrotational compressible flow
is the Prandtl-Meyer expansion wave., This sclution was originally
obtained by seeking directly a solution of the equations of com-
pressible flow referred to polar coordinates in which the radial
distance is of no consequence to the density, pressure and
magnitude and direction of the velocity., It therefore had the
; property that the density, pressure anda velocity vector were
constant along radii through a fixed point, but this restriction
. can he removed and the solution is capable of generalization to
the case for which conditions are constant along a series of
straight lines not necessarily concurrent. In the extended case
the variables u, v, py, p are all functions of just one independent

variable and relations of the %“ype 3(u,v)/8(x,y) = O hold every-

where. The vectors W, Vv, Vp, Vp are all parallel and each of

the variables may be considered as reduvucing to a function of a

function A (x,y) which may remain unspecified or chosen to reduce

4

to gy Or & {33y}, or any cocmbination of these guantities, as

b

convenience requires. ©Such flows for which the velocity vector

1, The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract N7onr-35801 with Brown University.

2. Research Associate, Division of Applied Matnematics, Brown
University.
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g reduces to a (vector) function of just one independent veriable
N\ are now commonly referred to as "simple waves", It is known
that steady irrotational flows defined in this way have the
property that the pressure and density, as well as the velocity
gy reduce to functions of A.

More generally it is desirable to extend the concept of
the simple wave, for which g reduces to a function of A only,
but to say nothing about the remaining variables p and p,y to
fiows which are not necessarily steady and irrotational or for
which ccaditions of wvelocity are not necessarily constant along
straight lines or that the isovels intersect in a fixed pointe.
The first step in this direction was taken by Prin [l]* who con-
sidered steady rotational plane flow by adapting the Prandtl-
Meyer method thereby presupposing concurrent isovels. Martin,
in a series of lengthy investigations, [2, 3, 4] succeeded in
dealing with the more general case, withcut making any assumptions
about the isovels, by extracting the simple wave from a general
theory in which the pressure p and the stream dencsity function
Y were selected as fundamental variables. It appeared that the
isovels constituted a system of straight lines, parallel or con-
current, Ghaffari [ 5] applied the original steady irrotaticnal
simple wave theory in terms of g as the fundamental varlable with
the aid of the Legendre contact transformation and Giese [6]
later used this same procedure in terms of N to discuss essen-

tially geometrical properties of the hodograph for one prccisely

*

Numbers in squere brackets refer to the Bibliography at the
end of the papsr,




T T

e

g £ TR, BT R

]

All1-111

similar phenomena including, in addition to the simple wave

q(\), the "double" wave E(K,p).

The One Parameter Fields, Only when the flow is unsteady
is the velccity a function of two independent variables in which
case the problem 1s mathematically a double wave, although the
ilow physically is instantaneously a simple wave varying with the
time, The one pavamcter velocity field is a special application
of a more genecral method in which any property of the flow may
be regarded as being reducible to a function of only one parameter.
In unsteady flow the method may be employed by focusing attention
on velocity potentials of the type ¢{(\) or more generally @(A,t).
In linearized flow the method yields supersonic potentials when

%? = x° - Bz(y2 + z2). The reduced potential of oscillatory flow

is of this variety,
coS ngh
S

with the standard notation B® = M2 - 1, ny = w/aBz. The curvces

f(x,y,2) =

N{xyt) = constant, are the cheracteristic curves which in the

Y e
generalized simple wave reduce in all cases to a system of straight
lines (not neceassarily coincident with one family of Mach lines

of supersonic flow) except in the rotational unsteady compressible
case.,

The purpose of this report is to show how a variation of
the hodograph method, based on the application of the Legendre
contact transformation in terms of the parameter N which remains
unspecified,; may be conveniently employcd to rapidly construct

rotational anc unsteady generalizations of the simple wave q(A\)
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when N = A(x,y,t) in general, Finally the more general unsteady

wave for which ¢ = q(M;t) 3N = AN(xyt) is considered in Section IV,

General Fquations of the Flow. The gencral equations

of motion, continuity and adiabatic transformation,

)
(g *a°*Vg+p~ w=0

3 I
6‘%+V (pg)-—o

N
-]
<
g
P
o}
©
]
_<
g
|
O

0
(7 + 4

may be transformed to give

ag vt vd - TV

n
Ke]
1=
~~
[
*
N
s

where .
2
=3z = =Y
Beg+oy 5=0 log(p )

H=vy,q

2
and a = (Yp/p)l/ defines the acoustic speed and T = p/(pR) the

absclute temperature., Since T = az/yR then Croccel!s equation

(1,2) may be used to yield another equation in addition to (1.1l)
involving just a2 and g
(-2 0 -
vAta (g +a°*vay =0 (1.3)
or 5
v {a (g +awm-g, W} =o0, (1.4)
iNQ =T ==\ J

N R AT s 5L
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Steady Rotational Flowsi A Simplified Theory. Attention

being confined to iso-energetic flows {or which H = constant,

the general equations for the velccity reduce to

v'@a ™ =0 (1.5)
v, (a q W) =0 (1.6)
A LY ‘
where ) 5 2
q a - C Y
T+-—_‘Y —5 T (1.7

serves to provide the acoustic speed directly in terms of the
velocity and the iso-energetic constant ¢ (actually the grecatest
possible speed). The fundamental assunption of the existence
of a flow of the simple wave pattern is most easily exploited

by using, not t.c .rdinary stream function, but Croccots stream

Y
v = T

function ¢ given by 2

!
~~
| ol
.

o

the necessary condition for the existence of which is implied by
(1.5); and then define the associated function ®{x,y) by the

Legendre contact transformation
1p=ll‘+;'_'f; (1.9)

with the notation Q =K = vy which in the following
analysis 1s convenient because Q rather than g, is the fundamental
field vector.
The transformations employed are two-{old:
1. The current independent wvariables (x,y) are replaced by

(hyb)y

Sk 4

s mtmas o
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2, The dependent function Y(x,y) is itself replaced by P,
its legendre transform, but is also retained as a fund-
amental independent variable where necessary-.

This procedure reduces the general probhlem of the
rotational simple wave, originally that of two non-linear partial
differential equations for g(x); w(x,y) to the study of an
ordinary sccond order differential ecuation for E(X) and a
linear ordinary second order differential equation for ®(N).
This reduction is rapic¢ly achieved because @ and @ both reduce
to functions of A only, they are not general functions of the
new variables (\,¥), as for example, is w(A,¢), The transforma-
tien (xyy)—> (N\,¢) is permissible because

QAW % g
0(x,y)

which independence is immediate because

VA Q) = - VA =0

QKA

in virtue of Vh VW = O

It follows that VA, Vb = O,
that is, 8, YN =0

ly wh =0
only when QAQX

which is the excluded degenerzte casey 6, = O, of a parallel
(shear) flow, The following outlines and illustrates the general
method, the principles of which are subseguently adapted to

study unsteady flows 1n the sectiocns wvhich follow, Full details

and results of the ratational one-paramever fields will be found

S N AT ARG i s
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in the author's memoir [7] where a slightly different treatment
is employed., It is emphasized that the adopted procedure is not
restricted to flows of the type here discussed, but with modifi-
cation is capable of application to a great diversity of fluid
flow phenomena of the simple wave pattern, (e.g., unsteady,
rotational and viscous iancompressible motion -~ see another
report). the criterion bein; the existence of a suitable field
gradient vector cdepending on N only, It is at once clear from
(1.7), and (1.8) that a2, and §, reduce tc functions of N only,
being independent of 1y, therefore it is possible to write the

total differential of (1.9) in the form
d® + (£ * @\J)an =0

so that @ = §(N\) and

from which by further differentiation is obtaincd

(B + 2%, VA +2 =0 (1,13}
The following representations are employed,
Wi

la 9! =pm) a™™ (1.12)

M A
8 * F()\)Q)\ = K(MQ (1.13)
vhere an(K) = (o5 qz)qi & a2q29i (1.14)
FOM = - & (log 6)) (1.15)

oAl
K(N) = ;ESA- S [Q—2 + Qi ] (1,16)

N };’i
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0 Also an expression for the vorticity which follows from (1.6), E
£ and (1.8) '
E _ 2y
& Vy (w a Y‘l) =0
A 2y
! or -1
w = G(xp)aY - (1.17)

in terms of some function G(¥).

Since w =g 8 = VKA.EK then (1,11), (1,12),and (1.17)

gives
(B, + £°Qy,) G ($) = D(N)

finally substitution of the scalar produce x_"Qkk from (1,13)
with the aid of (1.9), and (1,10) gives

Since (N ¥) are independent, a field equation of the type (1.15)

can only be true (since F, K, ¥, D are independent of ¥) if

either
1. G = A;  K(\) = 0 Tyy + FONG, = Q%z

2e G(Y) = A/p; AK(N) = D(N)5 By + F(N¥, = K(MP =0

where A is a constant determining the vorticity distribution in

2y 2y
o=l v
Aa 3 (A/Y) a

in terms of Crocco'!s stream function Y3 if formulae expressed in

zlternative forms ‘

xS

terns of the normal strecam function arz required then aniropriate

conversion relations must be employed,

AU ABTTIRIN S

< A I AT B ol o .
A
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Properties of the A-lines. The first possibility

K(N) = O implies, from (1,13),

é Qxx + F(X)Qx =.O

which may be integratezd to show that Qx is parallei to a fixed
vector, Therefore the A-~lines (1,10) constitute a system of
parallel lines, These are the flows which appear to elude treat-
ment by other gereral methoas and for which a direct approach

is simpler.

The second possibility, for which

i

Pyy + F(M)P, - K(M® =0
AN A

N
[
*

Qxx + F(k)gk - XK(N)Z =0 (1,2C)
implies, eliminating the functions F(A), K(A),

P U v

i

I -

NN R 1T ©
|
|

g

where (U,V) are the components of Q(A), This means however that

the three non-parallel lines
P+ 2*Q=0; P+ 28, =0, B+l *Q2,,=0

are ccncurrent and implies the existence of a vector;-o(K) such

that

-}

m r o = o N - N
b 4 =0 S A4

ARt @y T 08 W T E, C Gy T

identically in A,

B e e ] - A MO S e M g s AR NS
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Differentiating the first one and using the second gilves

(I-O)x * 9 = O
whilst differentiating the second and using the third yields

so that since the vectors Q, QK are neither zero nor parallel

(except in degenerate cases),

= O,

Q)
7l

Therefore ry is a [ixed vector, independent of A, and the three
lines in question all pass through the same fixed point for all
values of Aj in particular the parameter lines (1,10) are con-
current, These results show that in no case s a non-degenerate
envelope of the A-lines possible, and also that in the case of
concurrent A-lines, that, by selecting as the origin the point
througl which they all sass, $(N) = O, In other words, the
Legendre transform of Croccol!s stream fuaction may be taken to
be identically zero in the theory of a rotational stieady simple
wave, except vhen conditions are constant along a series of

straight lines, This is in direct contrast to the classical

conveXx A -envelope is possible corresponding to arbitrary B(\).

The preceding mcthod is sti)l valid, however, as far as equation

(1.18), which in the simpler case ol G(y) = @ simply reduces
to D(N) = 0 so that ®(\) may be arbitrarily chosen (subject to

the condition that the A-envelope is a simple convex curve), By
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(1.1%) the equation for the velocity D(A) = O will yield by
integration the standard hodograph epicycloid @ = 6(q). More

directly (1.5) gives 2
A2 NI (9_ aY-l))\zo
and g, q = O gives
A
— =O
Witk 2,
therefore the velocity relation for a classical simple wave 1s
2
¥,
g)\' (C_],.a ))\* 0

which on expansion yields D(A) = O.

2, The Simple Wave in Uristeady I'low.s When unsteady flow

is considered a stream function rever exists in compressible flow
and it 1s necessary to confine attention to irrotational m
in order %o adapt the preceding method by replacing the stream
function of Crocco { by the velocity potential function @(x,y,t).
The equations of motion, continuity, irrotational motion and

isentropic flow are

Py v " (pg) =0

q +(g'v)g+%Vp=o

-t

=0
v, 4
pp"Y = constant

may be used to yield the general equations of unsteady potential
flow in the forna

v ’ C @ o IR SRR e
P Ml S o o D Tk
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B P vy (qga’) =0 (2,1)
5t a
2 2 2
q_ a 92 = £ . 2.2
s+ = + = % ( )

2
where ¢ is a constant, b = 2/y-1, 9 =V, and a = (%?)1/ is the
acoustic speed,

Intrecducing ®, the Legendre transform of ¢,

P =0+

[ie]

e V(p (203)
then

d®+ r*dq =0

The simplest generalization of the simple wave will be one for

which the velocity vector g reduces to a function of just one

independent parameter N incorporating the time, N = N(z 3 t}.

n
n

Therefore q

q(}) and dg = g,d\ so that

N
ad +

VO + (r* g,)9A=0

therefore @

i

®(N,t) and

O+ L gy =0 (2.4)

the function ® reducing to a function of (k,t) only, involving
t incependently as well as through NI 5 t).

The surfaces of constant A, that is of constant g, |,
constitute a system of planes wihich vary witin the time., In plane
flow the velocity is constant along each of a family of straight
lines varying with the time and normal to Sy The angle of

intersection T'(A) with Lhe streamlines being given by

cot ' = (qQ)\)/qx (245)

g
§
{
!
i
i

]
!

oA o e 4 Py e
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Differentiation of (2.4) with respect to a position gives
. Ozt gy)dhrdreg, =0
| that is, since dN = dX * VA,

(G + L ° qxx)vx + 2, = 0 (2:6)

Differentiating (2,3) partially with respect to the time gives,
since © = d(A\;t)

. L]
¢ =& + (0, + 1 * gx)k

that is .

P = (Dt (207)
in virtue of the field equation (2,4), An additional differen-
tiation now gives

(1] = + e

A T T

3 whilst the expression for N analogous to (2.6) for VA is similarly

obtained from (2.4) by differecntiation with respect to the time

giving .

(@xx + 1 gxx)x + ®Xt =0 (2.8)

so that the final expression for ¢ is

o 2. -1 ) .
(Pa= (Dtt = (DM:((D)\)\ + z ° g)\)\) (209)

For flows of the type considered we are replacing the fundamental

independent variables (X,y,t) by (A,p,t) so that the vector

i
!
1
}
1
¢
i
t

operator for grad,

= x.li + Jl
v =V AN chacp

g_ sarw ST sy s o TN SRR GBS
T e e v e e o e " ois
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are equivalent. When operating on g(k) this cperator reduces
to VN 3/0N\; but the general form must be retained for functions
like é, ¢ and a = ¥p/py since they will in general be functions
of ¢ as well as (N\,t),
Actually in the one parameter fields here consldered
only $ does not in general reduce to a function of (A,t) only,
The ecquations (2.1) and (2,2) for the velocity now

become

(azqk - 3a,a) * YA =200, N+ §

Z a3 2
9— é———- = c 3
=i e 5 (210

v

and the first gives, on substituting for v\, \ and 6,

2 . _ .
(a%q, = ag,a) * g, = (2qq, + {HIP = O (O, + 1 * q,,)

that is 5

22 - ¢ 5 32 . & (& : -
gy T laay T e - POt A (Sedd)

Since the ultimate aim is to replace (x,y) by (A,@), it remains
to obtain suitable expressions for the scalar product r ° gAA
occurring in (2,11)., This is achieved by noting that, except in
degenerate cases, the original field equations defining MN(x,y,t),
O(xyy,t)y

®+r*g=9 & +r-g, =0 (2.12)
may be solved explicitly for r to yield a parametric representa-
tion of the plane in the form r(A,,t). The position vector of
the field point occurring in (2.11) may be replaced as required
by functions of the independent variables (A,¢,t) by using the

expression

e s o
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+ A (N)g + Bi(N)a =0 (2.13)
3.5 T A3Ge s Biioe,
where r
Aj(N) = - EESLE d [q2 q'h'e"2 + q~2]
29, dx "M CA (2.14%)
= .. d 2 i
Bl(x) =~ 3% 1log a°6) J

Scalar multiplication of (2.13) by r and using (2.,12) gives

finally

T o

L* 3, = @ - ) (N) + @ B; (\)

so that (2.11) becomes
2 2 2 =
a°gy = (amy D) - ey OB A -] (2.15)

in which a2, being given by (2.10), is independent of ¢.
¢(r:t) never reduces to a Iunction of (A,t) only for

otherwise the velocity vector

4=V = VA

wlill only give irrotational flow

4=y, 4= VA

=0
A A

in the trivial case q[ gk = 0, It follows that if the field
=A

equation (2.19) is to be valid everywhere then

Ayt =0 (2.16)

and 2 o a

The condition (2.16) shows at cnce that either, or both, of A1(M),

@tt(x,t) must vanish identically,

R A Fppare T son 0 PRI WPy AT A G A e e A O JPTES
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I @tt(k,t) = 0, ®t(l,t) reduces to a function of A oniy

say g(\) and we can write
O(N,t) = tg(N) + £(N) (2.17)

where g(M\) 1s related to g(M\) by (2.17),

a®q; = [aa, + ' W T (8250
T iz e =5 (2.19)

It follows the parameter A(x,y,t) is given, implicitly, by the
field equation (2.4),
tet(\) + £1(N) +p g, =0 (2.20)

Regarding f and g as functions of g the following rela-

tion is equivalent tc (2.18), and {2.19),

2
(y - 131 + 620 2)(c2 = ¢2 - 2g) = 2(q + g,) (2.21)

q

The functions f£(q); g(q) may therefore be chosen arbitrarily,

the velocity distribution 6(g) corresponding to any celected

g(q) being obtained from the ordinary differential eguation (2.21).
The field equation (2.20) may then be used to determine 9(g) as

a function of (x,y,%t)

II1, Al(k) = 0o The second possibility implies from (2.13),
and {(2,1k4)

gk;\ - g}\(-d%- log ng)\) = ©

that is

d 1 _

= BT e e e e - ——— - - — T oA Sy em—arou 120w

. ... -~ .
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50 that(l/qzex)qx is a constant vector. Therefore the A-lines
(2.4) comprise a system of lines parallel to a fixed direction.

Integration of Aj(A) = O twice, using (2.1). gives
q = q, cosec (6 + 90) (2,22)

in terms of constants of integration qq, ©,. The component of
velocity in the direction © =.2’£'Oo has the constant value qg,
Since

q sin (0 + €) = q4 t(O)

with the usuwal notation for t(©) the unit tangent vector to the
streamline. Then

o2 .
gg sin“ (e + Go) = =g E(Qo)

thereforz the A-lines

R M
may be rewritten
2, — " 5
¢b sin“(e + @) =gz 2 * £(=6) (2,23)

When expressed in terms of © the equation (2.17) becomes

2P - 2 2 @ =2
a 95 (qqg + <I>gt) .y 1 45 (@ <I>o)

and then, using the parameier z = q_, cot (0 + Qﬁ), may be trans-
formed into the form
a2

2
) =% @

= (z % ta zz tt

where -

no

=<1
1o
=l
I
o
N
'
Q0
o
$
N
n
'

or finally using




A
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F(z;t) = ¢(z;t) + % tz° + % (q% - )t (2.24)
so that o
a = = (y =~ L)F (235t) (2.25)
chen F 2«F F, +tF _+ (v -21)F _u (2.26)
ks ve LU tt e tt '

Similarly the equation (2.23) for the parametric lines may be

expressed in terms of z and F(z,t), :

0

Fz(z;t) - tz + x cos O ~ y sin QO

which serves to provide z as a function of (x,y,t)when any soeliition
of (2,26) for F(z3t) 1is Inserted., If OO = 0 15 selected then

the parameter lines are parallel to the y-axis and are given by
x =tz - Fz(z;t)
where z = q, cot 6,

Concurrent Parameter Lines. When the classical theory

of the steady irrotational simple wave is developed, the general
simple wave generated by MA-lines enveloping a convex curve is
obtained by a generalization of the original Prandtl-Meyer expan-
sion wave for which the A-lines are concurrent through a fixed
point, It is clear however that this procedure cannot he repeated
tc obtain a generalized unsteady simple wave from the case of
concurrent parameter lines, for this latter is the vary case

which is automatically excluded by (2,17). For if the A~lines

are concurrent through a fixed point, this may be selected to
coincide with the origin then (2,20) gives g!(N) = f1 (A} = 0 so

that ® reduces to a function of time only, in fact ® = at + b
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where a,b are constants. The equation for the velocity (2,18)

reduces to 5 2 )
gy Ty
where 2 2
ga_ eCh o, = s
5 *-Y = constant

so that the entire flow has reduced to the Prandtl-Meyer simple
centered expension wave in steady flow. The second possibility
Al(k) = 0 implying parallel A-lines (preceding pages), it follows
that there is no unsteady simple centered wave, with fixed center.

of the type g(\),

The General Case. The envelope E(t) will be obtained

by solving Tor r the equations

@ + _I_'_ ) q = D
A =\ . (2.27)

o

!
O

'
M PE T Gy 70

the second, representing a one parameter family of straight lines,
being obtained from the first by partial differentiation with
respect to N (x,y,t assumed constant). These lines will De

parallel af gkA Oy OF A](X) = 0, which exceptional case

I T
shall be excluded at present, For any given (\,t), the

system (2.27) represcnts a line pair intersecting in the point

go(k;t) given by

-1
+t) = (D =
EO(Xsf) (-ngx ®kk Qx) ISXA gkkl

Now vector multiplication of (2.13) by qx gives, since
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L

2 (ad
IEA gx|= 4 9, = exp - j B, (M),
then %

Ay MM

lq . q\\l = Al(k) exp -\J By (M)axa

therefore

A M (ML) = (@ &, - @, §,) exp J B, (M)d A (2.28)

As N varies, ;O(K,t) will, for fixed t, generate a curve, the
envelope E(t) of the A-lines, If the A-lines are concurrent then

E(t) degenerates into a point and r.(AN;t) is fixed for all values
=0 ?

of Ny That is L, reduces to a function of time only, therefore
6_1:0/6)\ = OQ
Elimination of the vector Q%k from (2,13) gives
Al(k)gokx;t) = - [QXXQA + Q) (Alg + Blgx)] exp ! Bl(k)dh
v

giving after partial diiferentiation with recspect to N and

repeated use of (2,13),

Al(k) B g == [QXXK + BlQKR + (Al + le)ék

A i
1A | :
= KI“ (@\5 + By ®X)]Qk X exp J Bl(A)dk

so that (go)x = O when ®(\;t) satisfies
Dyt (Bt B0 - (@, + o) 1A= o
NUAD BN AN T LT SN SN
1
giving, on partial integration in terms of a function of inte-

gration h(t),

Oy, *+ By(N®, + A (MO = h(t) &) (W)

AN

;



(— =

All-111 21

Since the case Al(X) = 0 is excluded, then ®(A;t) is restricted

to the special form (2.,17) so that
A i .

in terms of g(}), f£(\), AL(N) Bl(X) which are not functions of
the independent variable t. It follows that h(t) is not arbitrary

in terms of constants

o

but must be a lirear function of t, define
(agy bo), not necessarily non-zero,
= +
h(t) aj + tby
so that f(A), g(\) are now given by

g)\)\ + Blg)\ + Al(g - ao) =0

=0

Therefore, apart from additive constants not affecting QX(XBt)’

o s | et | e

the functions £(A), g(A) both satisfy the ordinary linear differ-
ential equaticn

By + Blgx + Alg =0 (2,29)
in order that the Mlines may be instantaneously concurrent,
When thils concdition is satisfied thec time variotion of go(t) will

be given by (2.28); sinc ®t = g(N\),

Al(K) (_I_‘,O)t = QX) exp\f Bl(X)dX

(8 S35 = &y

1l

T S SRR e g

= [g)\(Al Q+ Bl 9.)\) + g)\)\ Q.)\] eXxp Bl()\ Yaa
or i ( A S
: (z,), = [e Q, - g, Q] exr J By (MdA

J

2%
0

in virtue of (2,29), r (t) being indepencent of t or A; it follows

O—.




i i 8 RS e e

gy
B :

4 O b Ve

A11-111 22

that the point of concurrency (the instantaneous 'center® of
the wave) moves with constant velocity in a fixed direction.
[Although  apparently a simple function of *, it may be demon-
strated by direct differentiation with respect to A and the use
of (2.29); (2.13) that (zo)xt = 0, as it must since (go)x = 0,
so that (;_O)t reduces to a constant, )

Therefore if

QKK + Bl(k)®x + Al(k)w =0 (25

W
(@]
~s

the A-lines are concurrent through the point ;O(t)

Al(k)'zo(t) = (Qk G5y = @kxgk) exp\I Bl(k)dk

which with the aid of (2.,13), and (2,30) reduces to

r(t) = (<D9,)\ - <I>)\ Q) exp f Bl()\)d?\ (2431

which, in fact, is also the intersection of the lines

The three lines

¢+ * q=0; d, +r*q, =0; o, +1

A B

L
are therefore concurreat, for all A, through the noint ;o(b).
This property may also be derived by a similar method to that
resorted to for the stealy rotational flowsj; ecuations (2,13},
and (2,30) being exactly analogous to (1,20) and (1,19).

Wnen (2,30) is satisfied the unsteady simple wave reduces

to a flow which is essentially "steady". 1In fact a simple
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transformation to the moving rectangular coordinate system ;'
' (he,t) = 2(Ay@,t) = Eo(t)
gives since r(Mh,p,t) = [(D - ¢)QK - QK Q] exp J Bl(k)dx

obtained by solving (2.3), and (2.4%), therefore

-
o' (Nyp,t) = - ¢ g\ exp Bl(X)dx

0 that the revised representation reduces to r'(\,p) and the
eqguation of the parameter line QX o qx = O referreca to the
moving axes is

QK + (p' + Eo) . SK =0

in which (2.31) gives

I

o, +r, "4

LTIty =0 - (@0 ) epr\ By (M)dN

= Q
in virtue of the definition (2,1k) of Bl(x). The fundamental

egquation of the lines of constant N therefore recduces to
rt ¢+ g.=0

which, since gq = E(K), defines X as a function of pr' only, not t,
Referred tb the new coordin~te system moving along with the point
of concurrency go(t) with constant velocity, therefeore, the flow
reduces to a steady phenomenon - the simple central Prandtl-Meyer

expansion wave,
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Non-Degenerate Envelope, The case of concurrent A-lines

representing no essentially new phenomena, attentlion will be
directed to flows possessing a non-degenerate A-envelope. For
such flows the functions £, g may be regarded as functions of
g (this amounts to selecting the arbitrary parameter A(xyt) to
coincide with q(xyt) = q(N) =g = N\).

The relevant equaticns are

2, 2

(v~ 1A + %07y (c? - 42 - 26) = 2(a + g )"

then, provided at least one oif the relations

+ B,(q)g_ + A (q)g # 0
gqq 1 q gq 1 q,8

qu + Bl(q)fq + Al(q)f Z0

is not viclzted, ihe A-lines will not be concurrent.

2
Solution 1. Take for example g(g) == q ; £(gq) = O then,

PO

if b2 = c2/2

a2 = (y- 1)(12 - ¢?)
let
q2 = b2(sin2z + p2cos2z)
2 y - 1
p :—-_.;._.g
then Y
a =2bp cos z
so that, from (2,32),
qe_ = p”l tan z 2.34)

when the

e

ositive sign for the sguare root is szlected,

Exprecssed in terms of gz,
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p@z = (1 - p2)C]:i-p2cot22)“l
which may be integrated to give
6 = p-lz + tan-l(p cot 2) + W - éL (B:3D)

by suitable choice of the constant of integration,
Now from (2.5) the angle which the streamlines make with

the lines of constant velocity is given by.using (2,34),
tan T = p cot z (2,36)

so that (2,35) may be rewritten,

w o |
6=pz 4l + (2 -p"") (2,37)
(2.33) becomes
gt + x{(q ces 0)q + y(gq sin @)q = O
or, on performing the diifferentiation, using qu = cot "'y and
expressing x,y in terms of polar coordinates (r,p) (x = r cos ¢,
y = r sin 9),
gt sin " =7 sin (@ = T ~ ¢)
Finally, in terms of 2z, using (2,36), and (2.,37),
-l LS - s
R sin (p "2 - ¢ = 55) = ¢cos 2z (2.38)

where R = r/pbt, For any fixed z, equation (2.38) represents the
(Ry9p)equation of a siraight line ané the envelope of the system
as z varies will be given additionally by partial differentiation

with respect to zj yielding a second line,
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-1 T s
R cos Z =P = = - p sin z (2,39)
(p ¢ EF) P

and therefore the equations in parametric form may be expressed

in terms of z (in terms of which I'y q, © are already known),

P =f 2 - tan"1 (p tan z) = g% + %? (2,40)

2
R® = cos®z + p2sinz (2,41)

therefore the (R,9) equaticn may be explicitiy written down if

desired, since

2
tan z = (_} = Rz-)l/2

Fo-p
andO(p(R(l (pzz-l'forY:’?)
= = 11 o

If in (2,40), z is regarded as the radial distance in
polar coordinates (z,9) ti.en (2,4%C) is the equation of an epi-

cycloid, and since (2.41) may be rewritten
R2 = = p2) cos®z + p2

the actuval curve in the (R,9) may be drawn,

The envelope is similar to an epicycloid which increases
linecarly in slze since r = R pbt. Aloing each tangent line the
velocity vecter is instantancously constant and is inclined to
the Jine at the angle I’ according to (2+36)., The instantaneous
streamlines are pevpendicular to the tangent gensrated from the
point of the envelope given by z = 0 2nd then sweep round to
approach asymptotically the direction parallel to the tangent at
7z = /2,

The parameter line z = 0 alonpg which the {lou commences
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T A i -

moves normal to itself with velocity pb, equal to that of the
fluid along it, The z = O line is perpendicular to the radius
6 = ~ P where, 8§ = = n/2(p"1-3) lies in the fourth quadrant,
(0 < B <w/2 for ¥ = 7/5; p> = 1/11).

3+ Soluticn Involving an Initial Advancing Discontinuity.
When the A-lines are parallel the flow is given by a solution

F(z3t) of the non-linear partial differential equation

2 = ..
th SRR B & Ftt + (v - 1)Ft 0 (3.1)

the velocity parameter z(x,t) being then given by the field

equation
x = 2t ~ F,(z;t) (3.25

4 o 2 e ] ; D 2 = .
For the acoustic speed; a® =.Li§h_(c“ = g, =& = t)

that is 2% = - (y - 1)F, (2;t)

w2

so that for non-negative pressurcs we must consider solutions
& of (3.1) for which the time derivative is negative only,

An interesting solution exhibiting an unsteady singular-

"
1

ity in two-dimensional flow may be obtained by separating the

& variables and trying
g F(z3t) = 2(2)T(t)
i
Pe
E giving as a possible soluticn,
&
& tT e + (v - 1)'1‘t = C
5 provided 5
‘ 77 Ty
223 = = constant, independent ~f 2 or t.
z2 IT. '
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2
The first implies T(t) = A.t i (in terms of a constant A)and

1

this is automatically compatible with the second and third
conditiuns when y-1
z(z) = AZZ

so that we may take as a special solution of (3.1),

b r~1
2z

- 2-y
(y = 1)@ - ¥v)

F(Z;t) = t (303)

by suvitable choice of the constant b which must be positive for
1 <<y <2, Taking vy = 7/9 then the parameter z(x,t) is given

implicitly b

1mplicCltliy Oy . itz (£)3/5 (3.1.{.)
3 zZ

z -

Confining attention to {,b

>0 |
;'O %; this equation defines z real

only when x exceeds its value when

at which

B
1
O

9z
which implies a concentration of differing z lines (wave lines)

and rapid change in velocity at the station

- % /8, 3/4

n

xl(t) say.
The wave line specified by constant z advances with speed

-3/5.-2/5

01®
i

= 2 + bz

which is very large near t = 0 and decreases to a constant wvalue

z, equal to the x-component of the instantaneously local fliuid
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speed, as t— @ . In contrast, the singular line, which at t =0
is crossing the y-axis with o velocity, decelerates with speed

eventually falling to zero as t—<>m . This speed is

5/8,3/%y - pp5/8y1/% _ o, (4

4 8
at (3P 1

is twice the x-componert of the local fluid located on the line
at time t., The instantaneous streamlines are defined by dy/dx =

qo/z so that, regarding t as constant,

ay _ do gx . Gory . b))
dz z dz Z Z87§
therefore
(v - y,)/a, = t log z + %? +3/5,-8/5
and

x = tz + 2b f3/5z"3/5
3

may be regarded as the parametric equations of the streamline
in terms of z as parameter, Yo being a constant determining the
different streamiines, Singular points in all such stresamlines
will occur when dy/0z = 9x/0z = O3 but the curvature is infinite
and dy/dx remains finite and one valued. This occurs when
z = zl(t) and it 1is seen that no stream™line may be continued
beyond the singular line into the region x S_xl(t), corresponding
to which no rcal values of z(x,t) exist.

Also uvoth branches of the x~z curve, corresponding to

the variations
0 <z < z(t)

z1(t) <z < o,
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cannct be simultaneously considered at a given positive time t,
because this would imply intersections of the streamlines and a
double valued velocity at the point (x,y,t).

However, in unsteady mction the instantaneous stream-
lines do not yicld a picture of the actual flow pattern and 1t
is necessary to obtain explicitly the equations of the paths of
the fluid elemerts. These are obtained, theoretically, by

integrating the equations,

Q

- d
'65 = z2(x,t);3 a%" = 4,

the parameter z being given by (3.4%). It is nccessary to adopt

an alternative procedure and to eventually express X and y in

terms of z, not the time., Form (3.4) by taking the total differ-

ential
dx =

alg
(o))
t
+
I

dz

o

therefcore the relation bvetween z and t along a particle path is

given by the ordinary differential eguation, for z{t);

dt _ & _ t//923/5
dz z b

giving an integration in terms of a constant a, depending on the

75

element, 5 2
2® +a = 5b(&) (3.5)

Therefore cn substitution for t as a function of zj

A

- nme s oD

o By Ao s B TV NAROLD .
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3x ___’+22+a ) RL
(5p)7/2

)>72 7 g (50)77?

2 (3+6)
(22 + a)5/2

(z2 + a

are the equations of the particle paths in which (a,qo) determine
the qaz elements and z, the x component of the fiuid speed is
used as fundamental parameter. The general form of the fluid
element paths, according to (3.6), will differ according as «

is positive or negative.

It is seen that when a > O the fluid paths possess a
cusp at z =1/2 V& . Then the element (ayq,) will generate this
cusp at time t = 16 b5/2/a2 along the line x = 64%/3 b5/2a-3/2
that is when it meets the line x = 3/3 bS/B’cB/)+ i,es x = xl(t).

When this occurs, the local acoustic speed, is given by
- E =(11- a7
a b (t) = (7]

so that lal =12& Va =

the streamlines intersect this line at the local Mach anglec

2, {t)s Therefore, on the singular line
1 ’ ’

o= sin™t EY 3y or the ncrmal component of the fluild speed 1s
q

sonic. In particular it foilows that the singular line only
occurs when the local fluid sneed (q% + 22) > a is supersonic.

The acceleration

-1
iz, &

8/5.7/5
« 77 = DA = ! -
+ 72 Zy + 42, bz(z t bt)

[

US L z,(t) so that, in effect,

becomes infinite when z = b
the solution breaks down on and to the lelt of the line x=xl(t).
Any attempt to continue the {low intc the region 0 £ x < xl(t),

which was previously occupied by fluid in continuous motion,

& o e

b o o e i 4 TS A AR 56 ey A
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must fail because the field Egqn. (3.4) will not give a real
velocity for x < xl(t); The parametric equations (3.6) are
similarly ncot applicable, and cannot yield real z for real

x < xl(t).

FPirst Solution. When elements a > O are considered there

are two possible paths. The first commencing at L = O3
x = 4/3 (5b)5/2a -3/2 continues to move to the right until it is
eventually overtaken at time t = 16 b5/2a-2 by the singular line
X = xl(t) which by that time has reached the station
x = 64/3 b5/2a'3/2[ = xl(t)]. The relevant range for z is
0 <z £1i/2 V& . When a £ Oy the corresponding fluid elements
are concentrated along the axis x = 0 at zero time, This diffi-
culty _. avoided by confining actention to a > O for which at
t = 0 the instantaneous streamlines occcupy the whole half plane
¥ >0 and comprise lines parallel to the x = O axis since z = O,
The singular line initially found along x = O, moving at high
speed; may be regarded as the result of a uniform impulsive
pressure applied cver this face (the x = O plane in three-dimen-
sional flov) from which compression waves are generated, These
waves proceed outwards with ever decreasing velocity, deflecting
the rluid particles from their initially vertical paths,

The compression waves precede the advancing singular line
X = xl(t) which overtakes the fluid instantaneously moving where
x~component of velocity is locally sonic. At the instant of
interception this component is abruptly doubled to equal the
velocity 2 zl(t) of propagation of the discontinuity, the fluid

being carried along in an ever increasing concentration (density)
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along the singular line, This process causes tne speed of pro-
pagation to reduce continuously and fall to zero as time increases,
It should be noted that the advancing singular line cannot be
considered, as a shock wave; the fluld overtaken has its speed
discontinously increased but the normal velocity relative to
that of the front rereduces to zcrc so that this change does not
resemble passage through a shock. In addition the fluld does
not nass through the singularity but accumulates along the front
and is carried along with it, leaving a vacuum in the region
behind,.

Since p ca’ and a° = b(%)Z/S, the uniformly distributed
surface pressure necessary to be applied along the boundary
y = p2/By-1/H

= x,(t) is obtained vhen z = z,(t therefore

po t~ 17,

Second Solution. When the second branch z;(t) < z <

is considered flow obtained is quite different because at t = O
there is an intense concentratioa (high density) of fluid alcng
the x = 0 axis, across which it is instantaneously released with
high speed, expanding into the adjacent vacuum x > 0 (x < O can
be similarly considerel), At a subsequent time t the singular
line has advanced to x = xl(t) with ever decreasing speed and the
fluid reieased at t = O continues to precede the singular line
also with ever decreasing speeds Unlike the phenomenon for

a > 0, the front never overtakes the preceding a< 0O fluid again
but falls back as time progesses. This may be demunnsirated by
focusing attention on conditions at a chosen time t(> C). At

this time the front is moving forwvard with speed
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= 22, (t) = 27 814 op ¢ = 2Hp3/2,H

, and the x-component
5/2 -é%
of velocity of any particle a < O is z given by t=(5b) z(z°+a)

> (5b)5/22"+. Therefore

4p5725 ™ 5 (50) 52,7

(5b)
or e/ _1

z 25” 2 v >v.
It follows, since this inequality is valid for all positive time,
that all the a < O fluid elements initially concentrated there
precede the singular line, A similar argument shows that the
a > 0 elements are characterized by z< v, =go that considcrable
information is obtained from the curve showing the variations
of x with a(~m < a.ghb5/ht—l/2) at any timc t > O.

This may be obtained by noting that x»(a,t) is given

jointly in terms of (z,a) by

3x )4'22-*-(1

= e (3.8)
(50)772 (42 + )5/2

where z(a,t) is given by

Z

£
= - (3.9)
(50)72 (22 + )5/

Ir follows by differentiation partially with respect to a

(t constant) for x{a,t);

Therefore, eliminating &z/0c,

B et
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X - B
da 22 (3.10)

The subsidiary curves giving the variation of x4a with z are
first drawn and then combined to give, with the aid of (3.10),

the curve X~ a « These curves have equations

8/5 2
_zt+%b.(£’l.) 3 a=5b(_i_)/5_22

"
1

(D
3
e
2}
A8}
ot
(3]
v}

. cusp at [xl(t), al(t)] in the (x,a) locus where

%, () = % p/0e3M a () = w12
2g(t) = (50BN 5 (py = p9/Be/N

The curve varies slighily with t but it is seen how only
one branch may be considered at a time, since for auny given (x,t)
two different values of a, with corresponding different velccities
cannot be simultaneously considered. As t increases the cusp

g & )+ Sl/ht -‘_//h‘_

approaches zero, the total variation of a in the
first solution [0 < a £ hbS/ut‘l/g; 6< 2 L zl(t)] being con-
tinuously reduced as more and nmorc elements are caught in the
advancing front. A similar state of affairs exists when the
second soluticn [-co < a.ghb5/4t'l/2; z1(t) £ 2 < + o0l is con-
sidered, particles for which a > O being removed from the regime
of continuous fluid {low by the ac rancing front, but the a < O
elements are never reached and contlinue thelr motion uninterrupted
for all time.

The variation of speed vith time specified by (3.9) of
elements for any a3 -® < a < + @ relative to that of the

singular line which is z = 2zq(t) = 2b>/8t"1/4 shows that

e i i e oo i it 8 A & SV SR Al neglra A
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1. Elements a < O always move faster than the singular line

at any time t.
2, Elements a > O in range %w/a £z < o initially move
faster but are eventually overtaken by the singular line
These results follow because the intersection of the

Singular line curve A with the a > O curve B occurs in the range

The front of the disturbance which expands inito the vacuum is
therefore composed of high speed o < O elements,

The field equation curve is shown in Fig. 1. The Figuress
3, 4, 5, and 6 are used to draw the particle poaths and Fig. 2 the
instantanecus streamlines of the first solution, The correspond-
ing curvec for the particle paths of the second solution are

shown in Figures 7, 8, 9, and 10.

4, Generalization of tiie Unsieady Simple Wave. When

the direct extension of the simple wave q(M\) was considered in
Section 2, the combined single eguation for the velocity (obtalned
b§ simple elimination cf a° between (2.1) and (2.,2)) yielded the
two eguations (2,16), (2.17) which could be replaced by an
ordinary differential equation for the velocity together with a
partial differential equation for ®(A,t)., There were two dis-
tinct pussivilities but both were restrictive, Either the A-lines
were parallel (in which case the flows could be treated by a

more direct method), or, in the case of a non-degenerate envelope,

the time variation of ®(A\,t) was linear. If the preceding mcthod

is adapted to flows of the type g(A;t), in which the time

e Ao o L
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variation occurs independently as well as through the paramecter
k(x,i,t), by replacing (x,y,t) by (A\,p,t) as fundamental indepen-
dent variables, then the original single partial differential
equation for the velocity regarded as a function of the three
independent variakles (x,y,t) may be reduced to three partial
differential eguations for gq, 6, ¥ regarded as functions of the
two variables (A,t). As in the simpler one parameter velocity
field, this reduction is achieved by repeating the two fold
transformation of (x,y,t) into (Ay9,t), simultaneously using the
Legendre conteact transformation to transform the dependent func-
tion ¢ into ®, whilst retaining ¢ as a fundamental independent
variable,

The reduction achieved is again due to the fact that
d(x,y,t) reduces to a function of {A,t) only and is independent
of ¢, Such flows for which the velocity vector, reducing to a
function of two independent variables (A,t) are sometimes referred
to as '"double waves" but the title simple wave is retained for
the fiows here discussed because the hodograrh in the velocity
plane still reduces to a curve, though this curve may vary with
the (ime aiid generate a surface in the velocity time space,

The original analysis may be repeated by remembtering that

since g = q(A,t),

in which gt does notv mean the total time variation of q(A,t) but
simply the partial derivative with respect to time when N is
constant. In the following, therefore, the suffix t is used to

denote partial differentlaticn orf a functicin of the type f£(A,t)
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with respect tc time when A is constant and not used to refer to

the total differentiation with respect to time for which (x,y)are

constant, except for 9 and N which are regarded as functlons of

(xyyyt)s The following revised equaticns are obtained by successive

differentiation
P+reeqg =9 (4+.1)
®>\+£'g)‘=o ()“‘}’.2)
Pp =Py + L ° g (4+.3)
Pop = Ppp TE T Gyt (O T D g N Gitant)

(0,42 g0+ g, =0

O T E T G * (g T2t 8y) =0

whilst the equations (2.10) for the velocity must be replaced by

2 - - L 1]
(a . = ad, a) "IN =2qla\ N * ) * @
2 2 c2
SreFxr e T5 (4.5)
which becones after substitution for ¢,, and VA, kt,
2 )
o . = 244 . .
(8%, - aqy @) © g, = (2aq, + & vz g @, +rg,)

4+e6)
-(2qqt+q;tt-.-'1_'_eq)(®‘+§_-

)
S S =0

It is noted that Py Qtt’ and a? must continue to be regarded as
general functions of position and time and the object is now to

find their equivalent representations as functions of (K,W,t).

e A e o i i e W
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The required expressions analogous to (2.13) are

{

Do F A (hyt)g + Bl(K,t)g%.= 0

{2
\ /vy

t)q
-\

o

e ¥ Ay(Aytlg + B, ; 5
gtt + Ay (A, 00 + B3(k,t)gx =0 r

]

!
|
i
u

q  + A (Nt + Bq(x,t)gk

where the coefficients Ai’ B, are functions of (A,t) only and

1
are given by relations of the type

Ajaa =g &
~“NTA  TAATAM
B, e4a =-g4g
AN “A™AN
therefore explicitly
3.2
O O rapalcp =5
i i L UL
B, = - 3 (log g°0y)
i oL 08 8 BN
2 2,2
A, = EA;;—E~EL 2 [6 + tan™t i) ]
1 a ey oA Qs (1.8)
2 2
i _ax 98 o B T o S T S
p Blemm—mpgp [B P T o 5 B, F e 90
q Q 2q,0,q
T T i P T i L el B2
3 qgk tt t q -EQQK H B3 q2gk at(q t)
_BO m 4G 5 o= %
AL*-“ 9 l;,——é—
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The actual computation of these coefficients is best done as
follows, With the usual notation for t(6) = (cos ©, sin 9)

the unit tangent vector along thc streamline,

qa = qt(e)
therefore i
= t + goe.n
2x - he T WS
I 2
Gyn = Ay - q65)L + (ZQKQK + qghk)a
therefore

2 ) 2 2.3
a78,a,4 + [a00y0)y - A\ + 2938 +a"exlq

= (2 b}
(29,8 + a6y, Jag,

or
gmx + A (N, t)g + Bl(h,t)g\ =0
where
208, (A, t) = (g° + 2@ )6, + = B,
"% qx q q —:—,x

after some rearrangement.

2 - 2 22, 8 [ R L

a Q)\ ql()\yv) = (q)\ O)\) ~— Lo + ——

an
or,equivalently,
3,2

Similar procedures yield the explicit expressions for the

remaining coefficients,




All1-111 41

Scaler multiplication of equations (4.7) by r and then
using (4.1) and (4.2) to substitute for the scalar prcducts

L *q ;I e« g, gives
2 =

n

T 9_)\)\ = (p - q;)Al + CD)\Bl ':

!

LG, = @-eh B L
; (4.9)

. = (D - AL + B

BT, T @ et ad

|

(] = s |

r g_t (@ CP)A)-f- + (D)\B’-f- \l

and direct substitution into (4.6) and (&4.%5) gives

XOLE) + (@ - @)Y(A,t) + (@ - 9)°Z(A,t) = O (%.10)

in which the functions X,Y,Z are obtained as functions of g(A,t),
®(h,t) only and are therefore independent of ¢. It follows that
if the field equation (4,10) is to be valid everywhere then all

the coefflcients must be illusory, tnat is
X(NE) = Y(N,8) = Z2(N\t) = O (4,10a)

which are the three required partial differential equations for
q, ©, ® in terms of the indevendent variztlcs (A,t).
Explicitly
2

Z(At) = Ay = AjAy (4+.11)

which is independent of ®(A,t),
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X(Nt)

((D)\t + 2qq7\)\+ BZQ)\)(fb)\t + BZQ)\)
2 2
] Sy {fs
(B + 2aa, + By2)(2 3 B@) = (y= D { S5 d
- o - BMCI))\} al +a’d} (+.12)

5 - . . ®

2

- A (q’tt + 2qq, + B3cb)\) + (v~ 14y 4, (4.13)

In general, solutions of the equations {(4.10a), {(%.11), (4,12),
and (4,13) are very difficult to obtain, such flows corresponding
to the general double vave solutiori. The original simplified
theory of the unsteady simple wave may be extracted by noting
that in that case all the derivatives Qs ixt’ q,, Vvanish there-

tt

fore A2 = A3 = AH = B2 = B3 = Bg = 0 so that

\ 2 25
b =
X(N L) (qq)\ + CD)\t) = (Dtt(d))\)\ + qu))\) - a"gy

!

Zint) = O

The condition 2 = 0 is theref

@]

rve automatically satisfied and the
adaditional relations X = ¥ = O reprocduce the equations (2,16),

and (2,17).

The A-Envelope. When the generalization of the simple
wave to steady rotational comprecsible flow it is found that the
A-lines are concurrent or paraliel (which may be regarded as a

particular case of concurrent lines when the point of concurrency

P
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recedes to infinity) and that in no case is a non-degenerate
envelope possible, This is in contrast to the criginal steady
irrotational simple wave, for which an arbitrary curve may be
assigned in advance to be the envelope of the A-lines from which
the flow is constructed, In rotational and unsteady incompress-
ible flow it is also found that there is no non-degenerate
envciope. The simple wave in unsteady flow however represents

a much more general class of flows because it ic possible to
optain solutions for which the A -lines are neither parallel nor

b e T e e dans A
1€ enveiope

{(t) would be obtained, theoretically,

®
-3
=1

Oy solving for the eguations

Lig)

1

d. + 1 =0
RS L (4.1%)

By, 78 iy = O

This would be possible provided Gy 025 #0 (lees A 7 0), the
exceptional case occurring when the A-iines are all parallel,
If the lines are concurrent, then the point of concurrency may
vary with the time as would thc gence.-al envelone vary with the
time. If however they are concurrent through a fixed point,
this pcint may be selected to coincide with the origin without
loss of generality and then QKCX’t) - 0 sc that ® recduces to a
function of time only.

To construct the flow il is necessery to draw the envelope
vhich is given in parametric form r(A,t) from equations (Ht.14).

On the enveclope there is a relation between M and ¢ given by

(Dl\x + ((I} i (P)Al + (D)\Bl = O (:'*'015)

i
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in virtue of (4.14%) and (%,9), it follows that vyA and kt become

infinite on E(t) and that the accelesraticn

o}

3t 4 (y,t) + (g »V)g = (A +q* VNG, + 4
also becomes infinite, Thc solution cannot be continued as far
as the envelope where the A-lines coalesce and the velocity is
ambtignons. However the {low field of any solution is obtained
avtomatically by drawing the A-lines generated as the tangents
to the envelope. Along any such A-line, the value of A and
therefore of g(\,t) is constant and known from (4,14),

The parametric representation of the plane is obtained

from (4.,1), and (4.2),

r(hyo,t) = [(® - 9)Q, - $.Q] exp [B (N,t)8N (4.16)
A A J 1
since q29x = exp -\TBl(X,t)dk, and Q = KAS' By direct differ-
entiation
ph = [®kk + By Dyt Al(® - @1 Q expk[Bl(x,t)dk
.

The relation beiween N and ¢ along an instantancous streamline
will be obtaincd by integrating the differential definition

3,..8x = O where
A ar

_=;:>\dx+£cpds°

thercfore
+ fi 4 \ P
[Qxx + By@y + Ay (0 - @) Jadh + qy d¢ = 0O
In unsteady flow however it is ihe actusl paths of the fluid

elements which show the motion, Thcse paths arc cbtained by
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integrating the differential cquations

4 r{N,p,t) = E()\,t)

at
that is
daa de = ' o
I'_)\ 9t + zq) at + Z'_t g(}\,t) (4.17)

from which are obtained two ordinary simultaneous difierential
equations for A and ¢ regarded as functions of t cnly.

On integration in terms of twc constants (cl,cz), which

2

serve tc determine the initizl position of the oo eclements, A

«t

and © are obtained as Tfuncticns of time which when substituted
in (4.16) yield the position vector of the element (eq,¢5) in

the form r(t,cy,yc,)0

Sinpularitics. An inhcrent disadvantapge of inverse

mcthods such as the on¢ here ecmployed is that i¢ is difficult to
avoid in advancec solutions of the final equations giving rise to
discontinuitirs in thc streamlines in the physical plane., The
voloclty may be a many valuved function of position corresponding
to those regions in the physical plane for which the sclution
may not be mathcmatically unique, but it is possible to obtain

a physically peossible flow paltern by confining attention to

just cne branch of the A~y curves., In the physical planc the

instantancous strcamlines and particle paths corresponding to the

becomes infinite and the flow is supcrsonice Each soluition can-
not be continued beyond the cusp locus (limit line) or cven up
to it becausc such singuiaritics represent a local breakdown of

the continuous 'low taeory on which the flow was constructed,

erent branches usually mcet in a cusp, where the acceleration
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The fact that the acceleration becomes infinite where the local
fluid speed is supersonic suggests that it should be possible to
replace the 1limit line by a shock curve, however it is not usually
possible to satisfy all the necessary shock relations along the
1imit line. 1In the simple one paramcter field g(A\} of Sections

2, 3, this substitution was precluded because the limit l1lines
intersected the streamlines at the lccal Mach angle, and on
existing shock theory any shock inclined at the local Mach angle

has vanishing intensity simply reducing to a Mach wave.

The Simple Centred Wave. The equations {(#,11), (4,12),

and (4,13) are so complex that it is desirable first to investi-
gate the possible existence of flows for which the A-lines are
concurrent through a fixed point, and defer the general study of
these equations until Section 5. There i:g also the additional
possibility that the point of concurrency may vary with the times
In the simpler case, however, the origin may be selected as the
fixed point through which all the A-lines pass for all timc, then
QK = O and ® reduces to a function of time only. The three con-

ditions X = ¥ = Z = O then give,

5) %

$ 2 2
= le™ =" = 20,) a5 = 24°q,
2 .
2hoaqy *+ (y =~ DiAyg, = A (D, + 2qq,) I (+.18)
a2 - |

The functions Ay are given directly in terms of q(A3t), ©(Mt)
and their derivatives by eguations (4.8). @(t) may be eliminated

between the first two equations of (4,.,18) to yield an equation for

S
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2 -
q(A\;t) in addition to the third eguation, A5 = AlAB' This equa-
' . tion is

2 2
> 10 a7 N
2A - 1)A = A - e A

(4418), and (4,19) are therefore the general equations for the
velocity for the unsteady simple wave when the '"centre" is fixed,
It is obtained in terms of any parameter \(x,y,t) (for which VA
does not vanish) which may be iaken to be the velocity q(x,y,th
The original functional relation q = q(A,t) now simply reduces to

qa = N, so that qy = 1y Gyy =t = = gq., = O, whilst ©(\;t)

Lt N
becomes ©(q3t) #and 6y = Qq, Oy = Qqq, etc.

Equation (4.,19) now reduces %o

2
A
; 2 d -2 ~
2o # (y - LIk, 5,077 -ll ’5% (@ ) (4420)
q
where
} , (.‘
- ¢ =1 + q2ed® |
= q ,

L 2.2 :

¥ 1+ q0 3 _
L Ay = “'g‘““g— 7] (6 + tan ~qo ] i

47, - .
: Ay =278 2 g4 tanlye ]
o f
' O,. o)
— a2 it ot .
A 0 + -t =

3 t g ? AU qe !
q q J

Equations (4,18) and (4,20) now become two partial differential
equations for the single dependent functicn 9(q;t), q now being
regarded ag an independent variable, Thus it appears that the

flow is overdetermined, The above simplification of *the general
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theory may be obtained directly by resorting to the equations
(2,1) and (2,2), It should be noted however that this direct
approach is only possible when the A-lines are concurrent through
a fixed point, and may thereforc be considered as radii through
the origin when the current polar coordinate r (the radial dis-
tance) is of no conscquence to the velocity g It is not capable
of direct generalization to reproduce the more general equations
(4,10a) for which there exists a time varying envelope. In view
of the presence of three equations for just two functions (2,0)
or, in the simpler case, .wo equations for @, thtse equations will
be established in the simpler case, by a more direct method.,
laving thus verified their validity, it will be then justifiable
to return to the general equations (4,11), (4,12), and (4.13).

Direct Procedure of the Simplified Case. Let u,v be the

components of velocity along and normal to the radius vector
drawn from the origin, o the radial angle and Y = © - ¢ the angle

q makes with the radius vector, Then u = q cos ¢, v =q sin ¥}

and the general equation for the velocity,

u ‘T _ L[ 1)
Fr=vy) = alng, + I qo) +2q4 + ¢

2
+
a (ur

raduces to, since r is of no congeyuence to glest),

2 F .
a“(u + vg) = vqqy + 2rqq + re

that is,
(a® - ¢°)

q, sin P+ a2q9o cos ¢y = 2rqd + ré (4,22)

Now since gq(d,t) is independent of r
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(\
Jﬂ.'d}:=q°z+¢(t)

@(r,0;t)

reduces to

i

g = &(t) + rq cos Y

Also the condition vAg =0, 1eeey v = U gives
cot ¢ = qu (+.23)
from which by differentiation is obtained
a0 +q(e  +q6 ) = - cosec?® Yo
q qt aq
regarding 6(d;t) as a function of (qjt) so that 6 = © é + ©

q t’
etc, Therefore

2

alg® + (1 + cosec™d)s 1+ g8 + & c05902¢ =0
aq t

q” gt
Similarly . ”
qd[quq + (1 + cosoc%$)9q] = cosec”V
The expressions for the time derivatives of ¢ are

& p=®,_ - rqo sin
: Pste = T ¥

A A(gst)r sin 4
= +
? tt

2
& + (1 + cosec™ )6
98 d ( b)q

after successive differentiation and substitution in the resulting

expressions of q, where

3 = 2.’- a. 2 = 2—. 2 '
A(ast) (Gtcosec P o4 qut) q(quq + l+cosec“Y Qq)(Ott+Otcotw)

and the expression for the acoustic speed becomes

2 2y _ & 4 s
q=) )t rth sin ¢
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When these expressions are inserted in (4.22) and the coefficients

of (1 :r 3 r2) equated to zero there results the three relations

i
- 20) = 2q%s1n?¥ |
L

4

(v - 1)(c2 = ¢°

B, 2, _ -1 51,
(Y-l)@t cosec™V + 2(q6 +6, cosec Y)=q ®tt(q0qq+l+coaec ¥ Qq)

qt

A(gst) = 0 (H.2HJJ

which may be reccnciled with relations (4,13) by noting that, in

(4.21), since 6 = 6 - ¢ = 6 - cot‘lq@q = ¢ ¢ tan~tge_ 4 constant,
g
then 2], r
2, qe B @t cosec Y !
A = Cosec W g - _ g
2 q cotp 120 _
N coqecgm a8,, + (lq+ cosec2\b)9q |
= = [o] = y
1 q cot ¥ q 2 f (.25)
q 9
a !
5 !
!
= j, = nv
A3 tan w(gtt + Ot cot V) Ah Qt tan 1 i
J
Alg: = -
(q3t) (A2 A1A3)q Gq

Equations (4,24%) therefore reduce %o

G = Ajite® - g = 2®+)cose02¢ = 2q2

(y - l)A4 cosec2¢ + 2qA2 = A1 Qtt f (%.,26)
2
Ay = AjAy =0 J

These coincide with (4,18) since, in the original notation,

q = 0, and g? =1 + q292 = cosec2¢ i
aq a
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5. The General Case. The following 2nalysis deals with

. A

the case whcn the paramster lines do nol necessarily possess a
degenerate envelope. The relations (4.21) are transformed to

give, in terms of p = Qz; q = Qt

= & 2 ~22 = ok 2 =4
Al p(l + p=) + sz.%e A2 S q(1 + p°) + ta e
[ 2 -’
A, =2 + 0 & =4
3 = 5ire tt | T3
since z = log q; qu = Q. = D Simil.arly the expressions for the

functions By (4.8) become,

= ezB = 1 + A_gzz = e—zB = .Q.E’.t.
1 P 3 p
q + 0 =
R
< p p

wvhere g now denotes the derivative @y, and 1s not to be confused
with the total fluid speed now dencted by e,

The aagle ¢ which the parameter lines make with a fixed
& direction © = O is given, apart {rom a constant additive angle,

by 1@

= + tan~
d e can o

that is 1

6 = e + tan™"p
since I'y the angle at vhich the streamlines intersect the para-
meter lines, is given by‘

cotT' =6, =p

and d =0 =T,
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Solution cf the Velocity Fguation. Of the three funda-

mental simple wave equations (4,11), (4,12), and (4.13), only the
last two involve ®(q:t). The relation (4,11) involves only the
velocity and is indevendent of P, therefore it is possible to
obtain gencral properties of the flow predicted by the common
equation (4.11) for any possible form of d{q;t). (H.11)

(Ag = A1A3) gives for the equation for 6(z;t),
2
[gzt + q(1 + p2)] = {Qtt + pq2] . [Ozz + p(1 + p2)]
which becomes

2 2\r\ ~ . N~ Fod
(0,,944~9,4) + pq2922+p(l+p /vtt=aq(17p2zvzt~q2(l+p2)=0 (Sal)

V¥

which 1s equation of the Mange-Ampdre type. It is non-linear

but the second order terms of thc second degree occur only as the
2
2

Jacobian 8(p,q)/8(z,t) = 6,,0,, - 6, therefore it can be cealt

i
with by considering the characteristics which are given by

(cf. Forsyth, Differential Equations: p. “85).
, 2 i _
dp + p(1 + p=)dz + Aét = O
2
dq + Adz + pg~dt = 0O

where A is given by the cuadratic

e 2hq(1 + p°) + ao(1 + p2)2 =0

that is A = q(1 + pa). Thus the cquation for 6(zst) is always
parabolic, the roots A beinz real and coinzident,

The coincident chaoracteristics are given by
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i dp + p(l + pz)dz + gld. & pz)dt = 0

i

t

z 2 _
dq + q(1 + p7)dz + pg~dt = 0
¢ coinbined to eliminate éz in the form
2

qdp - pdq + g dt = O

so that, if v is an arbitrary parameter of integration,

Similarly, elimirction of 4t yields
2 2 _
padp - (1 + p“)dq ~ q(1 + p“)dz = O

so that on integration in terms of ancther perameter v,

2 22z
q7e" " = v(l + po) (5.3)

It follows that the "Intermediate Integral' of (5.1) may be ob~

tained by taking any arbitrary function of (u,v), that is
F(u,v) = 0

which, being an equation (involving p,¢) of the first order may

o

| 43 be further integrated for 6(x,t), if desired by Charpit's general
@

£ method for such non-linear first order partial differential

equations,
The general intermediate integral may be written

v = f(u),

hel

g7e”? = (1 + p2)f(t + £ (5.4)

where f is arbitrary. However, it is possible to evade the
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general method by solving (5,2), and (5.3) for p;g as functions

of (z,t,u,v) giving, since p = q(u - t),

o]
1]

where actually v = f{u), an arbitrary function of u,

Then insertion in

d® = pdz + qdt

gives
de - (u - t)dz + 4t
Vv eF
ngz - v(u = t)2
so that

' S |
0-c = cos™t %(u - t) Vv e Zj
L9

therefore 6(z,t) is given by

(u - t) Vv e~ 2

0
Q
ps!

(6 - ¢)

1

q cos (@ - ¢) o = &) v

where q now denotes the fluid speed.

If ¢, v are regarded as arbitrary functions of a singile

parameter N\= u) then

T {g - QN = N - 6) (5.5)

is the ''compiete” integral, from which the "general" integral is

obtained by partial differentiation with respect to A,

. A AR s emarm o e

e i

————
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\n
N

' (Ma sinfe - o0} = (= 83§10 + 3O (5.6)

and eliminating N between (5.5), and (5.6) [definitely chosen
Tunctions @(\), ¥(\) would be necessary in actually carrying out
this procedure],

It follows from (5.%) in terms of z = log g
cos [0 - (M) =PI\ = t)e”? (5.7)

therefore partial differentiation wvith respect to z gives, after
considering the corresponding variation of *{z,0,t) which accord-

ing to (5.6) vanishes, giving

D
1l

cot [Q - (P(k)] (508)

therefore 4
¢ = 0 - cot Qz

reduces 0, simply

¢ = p(N) (5.9)
{(choosing principal value for convenience), ¢ denotes the
inclination of any local parameter line (along which ©,q are
instantaneously constant) to 6 = 0, therefore these lines will
constitute a system of parallei lines if ¢ (M) reduces to a con-
gstant. Since in this case the left hand side of {%.6) vanishes
and the right hand side then merely implies that t is an arbitrary
function of A, then N is an arbitrary functiion of t so that (%.Y)
gives

q cos(@ ~ 6,) = F(t)

F(t) an arbitrary function of t and 6, a constant,

The combination of (5.5), and (5.6) is not the most

A s B b e s i f Ry it e IR . b A AN AR e A Y BT b W+

e e 2 T PP
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general solution for ©(qjt); a more general solution may be ob-

tained by applying Imschenetsky's method by inserting in (5.1)

the solution e
e cos (8 - ¢) = b(a - %)

and allowing the parameters (a,b) to vary, regarding ¢ as a

function of (a,b), Illowever attention will be confined to the

class of solutions obtained by eliminating A(q;t) between

1

g cos(6 = N) = N[V (N) - ¢] (5.10)

q sin(® - N\)

rp'm{xp(x) - t}w(x)w'(x) (5.11)

which are obtained from (5.7), and (5.8) after a slight change
of notations With this notation, A becomes equal tog ( egual the
inclination of any paramcter line to @ = 0), and is defined

implieitly in terms of the arbitrary functions ¢(\)- ¢(\) by
means of

® = GF e - 12 4 209,10, (b = £) + ¢2¢i (5.12)
obtained from (5.,10), and (5.11) by eliminution of ©, It is
always possible to rewrite the system (5.5), (5.6) in the form
(5.10), and (5.11) provided that, in ihe¢ original system the
function @(A) [occuring in (5.5), and (5.6)] does not reduce to

a constant,

Since 3
qu = cot a =6,
48 = @(N) cosec a |
& (5.13)
] ‘
AMgst) = @ - cot

e
e q

-~

e 0 e e b e MR < e e g

e R e o e o S S o WA -

A e
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then by differentiation

)
= a - A S
quz (q cot a q)cosec a

)

v ngtt = - ¢2c0sec?a cota + g cosec a(py + 9 cot a)kt % (5.14%)
2. | ) |
- . | ‘ . ;
q@zt = - coseca L¢ cosec a qxtj. J

The partial derivatives of A(g;t) may be obtained from (5.12),

giving n
LN, =K |
< (5.15)
LA)\q = qg j
where "
L =gy -~-1t)+ Py |
|
i (P (P>\) (.q) -t )+ (P(Pkwk f\ \ 5016)
= T Y !
A= (9% ¢, ) = t) + 20y + @b |
so that (5,14) becomes, since,
S b
q cos @ = ¢(h - t) |
: ! (5.17)
' q sin @ = gy (b - t) + gwh =1 |
£ then r H
¥ ‘= 12 2 2 N
gh S L + @ (II) - t) 2
= = f
£ t13 2 i
: E 86,, = q°[1 ~ oh - 1)AT
i < 1786, = q°[K - oAl ( (5.18)
-4 i
.;-:; I3 - 2 _ 3 : :
iﬁ EL Agtt K P (U - £)A |
¥ )

e
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The expressions (4,21) for Ay, i
qA, = cosecga tan a A l

1 q |

|

qh, cosec®a tan a A 4

t ( (5.19)

tan a cosec a(@x + @ cot a)Kt

If

A
=

th = ¢ tan o cosec «

become, with the aid of (5.17%), and (5.15),

5 2 1

LAy - tIA, = q7 |
L°A9W - t)A, = gk (5.20)

2 2 i

LAg( - t)Ay =K |

W - t)Ah = 4, J

therefore
%=%=%=24= 1 (5.21)
¢ T k¥ 1Ay 12e®@ - t)

It is clear from (5.19) and (5.21) that,

: 5 32

i ) xR

A 2 742

d q

A and that, from (5.15),
8
A &8 - >\ = O
g g = 1%
o therefore
& R e (5.22)
e 3 q t
B Alsoy
§ | e ( ) /{
o T = oy - t
2 a 7" |
> P
F Lo, =9 f (5423)
¢ @ =1+ 0%6q% = & ﬁ
i 1 L=

a emmen
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Relations Between Ai’Bi'. If z = log q then

5 .
™
2 o %) sz _ Gt(l + QZ) i Q]t ’]
sq A1 =1+ Qz + 5 qh, = 5 E
i A Z )
§ el p bt _ 5 i
: A3 = Ot + - Al+ = 5T J
‘ z = .,
n
L =1+ o2z - =28 %zt
,s 1 o, 2 o, .
< .
b 1
U q GZ. q h gZ J
Hence
n 2 . i
i By = q(e” - A;) B, = q(0. 0, - A) |
| q 1 2 et TR (5,2m4)
-« _ 2 |
] By = a0 - 43) By, = - afy |

There Exists the Following Identities. Jf we eliminate

(Qq,O&) between equations (5.24%), using
v

2 . 2
(63) (a83) = (a9,0,)

then 5
(qu + LB]_)(qA3 + BS) = (qA2 + B2)

that is

2 2 2 -
(BlB3 - Bz) + q (AlA3 = A2) + q(AlB3 + A3Bl - 2A2B2) = 0

Also, directly,

T — a 2 2 o
} E(A By+hy By ~2A5B5 )= -2\A1A3-A2)+(AlOt-2A29th+A30q) ; (5.5
\' E Py~
i(B,B B) (A A A2) ¢: 72 2AQO+A @2\ F
o) - ity - ) - nbg0 o) |

ol S st
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The Linear Equation for ®(g3;t). The two Monge-Ampére

equations (4,12), and (4.13) are both equations for $(q;t) in
which the coefficients Ay, B, are functions of (q,t) and 6(q;t),
the solution of (5.1) as expressed by the system (5.,10), and
(5.11). The final expressions for the coefficients Ay are given
in equation (5,.,21) in terms of arbitrary functions ¢(}), P(A) of
the variable N(q;t) (given by (5.12)) and the functions L(M;t),
A(N;t), K(N;t) (given by (5.16)). The equation (4,12) is a
general second degree Monge-Ampére equation, but (4,13) is of
the first degree in 9(q3t). It is preferable therefore to study,
first, solutions of (4.,13) and then return to (4,12) to obtain
any possible soluitions common to both these equations,

The equation (%.13) may be written

- 2
A3(I> -2A2(I> t+A P +(A3B1+A1B3-2A2B2)@q—2qA2+(Y-l)A\+g_q

or, in virtue of (5.25), since Ahy = Ag,

2 2\ _, 2
Axlyq2A 0 A Oy Al (A36] -24.0 0 A 07)=2qh+(y-1)A g (5.26a)

and, using (5.21), and (5.23)

2 . 2 2 }
+ + KO -gb = K+ (v=1)0A
b (0 q®q< g% t) q -{ (v-1)o

2
-2
K q)qq qKd 4

But from (5.23)
Ko, - a6y =é’iﬁ (Kb - ) - g°) = --u?

after simplification with (5.16).

B T s o e e = e e 28 o i £ -
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The final equation for ¢ 1s therefore
K¢ = 2qKP , + q2® + ¢¥¢2 -9 = q2 f2K + (y - l)¢A} (9.26b)
at tt A g Vg Il
This equation 1s parabolic, the coincident characteristics being

given by
q‘2dq2 + 2¢Kdqdt + K2d’c2 =0

that is
qdq + Kat = 0 (5.26¢)
which in virtue of (5.,195) may be written
quq + Xtdt =0
Therefore the characteristics coiicide with the curves

A(g;t) = constant (6.27)

Form (5.12), these A-curves constitute the cne parameter family

of hyperbolas
) -
(g° + 900 = ©)2 + 2000 (b = £) + 974 = ¢°

in the (q;t) plane., The subsidiary system of the eguation

(5.26) is

2 —_—
K apdt + q2deq = [q2(2K + vy -1 94) - qVL‘"\l’%\Pq'l Jdqdt

where P = ¢h; Q = }t' With the use of (5.26c), this system reduces

to qﬁﬂ?
K X : - . gk NN s
= (PBE =N 'ES'L Pat = (2K + +- lod )it  (5.28)

Since N(gj3t) = const. are the characteristic curves, it is possible

to integrate the system (5.28) regarding N, @(N), V(N) as con-

stants,
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For this purpcse (5.16), and (5.12) give

dK - .2 2
~3x e TP
99 _kx
dt q
Then
2 4 Ky = 4 dK dq
T =g -*x
therefore
3 4 Ky o w2 2,2 A 4 2
T () =K = @fe" s 45) = =@,

Insertion into (9%.28) enables the integration to be performed

giving )
Q- ‘%’i = [‘{21(()\,'0) +y =LoMaM,t)]de + ¢
\

where the incefinite integration ic to ve performed with N con-~

stanty and C is a constant of integration, The intermediate

integral of (5,26) is obtained by making C an arbitrary function

of N, therefore X
<1>t =5 g, = CN) + F(\,t) (5.29)
where

-F(A,t) = %[(Y + 1)(p2 + 2@5 +r (v - 1)cpcp>\)\] W - t)2
o 2yoa Uy Y = T e ) Y= t) (5.30)

This intermediate integral is linear in & and huas the subsidiary

system

g o 8dd, o G5
1 - K

CIN) + F(\3t)
in which A(qgst) is still given by (5.12). The first of the
equations implies

gqdq + Kdt = C

which (ef, equation (5.26c¢)) defines the original characteristics

i A0 S i A i AT A . e ¥
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(5.29)
A(q;t) = constant

and therefore this condition may be employed in conjunction with

%% = C(\) + F(\3t)

Yo yield the second integral of {(£.29) (by partial integration
with respect to time with A constant) in terms of a constant D,
r
I
i

4

d(qst) = = COAN)W - t) + | F(Ajt)dt + D

The general integral of (5.29), and therefore the complete inte-
gral of (5.26), may be obtained by making D an arbitrary runction

of N, so that

®(q3t) = DN) - M@ - £) + EQ)@ - £)2 + @ ~ £)3 (5.31)

where C(A), D(N\) are arbitrary, and

: GOV = 3 [y + 197 + 205 + (v - 1oy, ]

: E(N) = & ol2yo, by + (v - 1o, ]

-3 The Honge-Ampére Eguation for ®(g:t)., The relations

% (5.10), (5.,11), and (5.31) define ©(q;t); ®(q;t) in terms of the

4 arbitrary functions @(N)y $(N), C(N), D(N) of the parameter

Aqjt) given implicitly in terms of @(N), ¥(N) by means of
q - ((P )\/ - t) + zq)q))\ll"x (’4‘ = t) + 9 1!’)\ (3032)

It is necessary to find, thercfore, if it 1s possible, by suitable

choice of thesc four arbitrary functions; to satisfy the additional

A S 3 it i < o
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relation (%,12) between ®, 6. This relation

( -
(@ * B1O) (Bp + By®) = (@ + Bydy + 2a) (g + Bya)

2 c” - ; 242
= + -1 = - =0
a (Y ){__Z_S— @t B} @q (1L +gq Oq)
may be written -

2
= = ; = . -2
Coa ey ™ Tgp m RRD O B0 S RE T B &) aB, &,

- "2

. o 2
‘(BlBB-BZ)@czl-q +

-0, - B2 %(1+q9)-o

Like equation (5,1) this is a Monge-Ampére equation for ®(qst)
in which the coefficients are functions of q and ©(qjt) as well
as (@q;@t), since the second order terms of the second degree

occur only through the presence of the Jacobian a(®q;¢ )/8(qst)

A o = =5 2 A - o m
@qq@tt @qt. This Monge-Ampére equation may be reduced
slightly by usinz the relation (5.,1) (AlA3 = A2) for O(g;t) and

the relation (9.26) for ®&(q;t).
Substitution of the expressions (5.24) for By enables

the equation for ® tc be written

2 2 2~
® & - - 290 + qd -0 -2 + Q
qq¥tt " Fgp " 2@ + @ (02 - 2000 T Ot
-qd (AD - 2A0 = =
q q(A3 ad P4t + A @tt) 2q (e Qb A2)d>q
co i ol [e8= g
-q q( 19% - dAZBth ) - g+ (y = 1) —s

SRR T e pr e

Now using directly the linear equution for @ (eguation (5.26a))

this may be reduced to

. ST i X
e & e -
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2

2
> T - -2 " (%3 -200.¢ +6°¢ )
R T T T PR g tqt qtt
= q2(1 +20 0,0 ) + (y - 1) (gfi;;iii - }(1 + q292) =0
g tq A “t q

(5433)
that is

2 2 2
(d + qe~® (D + q8.® ) - (& + g6 % +
(Peq * 1 . q)( i A8 ( gt T 9 ot g q)

2 2 - 2.2
+ (v - 1) {2-.5_9_ . ‘Dt} 1 +q Oq>(5 04)
.3

nor the second derivatives (© o ) but only (Oq, Ot).

6 .,
ae’ th
The equation (5.33) (or its equivalent (5.3%)) is not

parabolic. The characteristics will be obtained by first finding

the roots of the equation in p,

2 2
== g2 (1 © 12 = (v-1)18 9 o l(1+0262
B = 2q(1 + 6P ) + (1 + 0,0,0,) (v 1)' . @tj(l+q 0%)

(again ef, Forsyth, Differential Equations, p. 485) that 1is, by
the roots p,

7

[w ~ a1 + oqot®q)]~2 = (y = 1)

2 2
129" _ o i+ 4267
L2 4

Tty

Now the equation (5.34) will be parabolic only if

o, =3 (% - a
= d(g3t) = % (c® = g°)t + F(q)
but resubstitution into (5,34) gives, since q%t = ¢ht + g = 0,
@qq@q@t =0
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Qt = 0 1s a degenerate (steady) flow whilst @a, ® cannot vanish
Qq |
and be simultaneously compatible with &, = 1/2(e2 - g2).

t

In the general case i1t would be necessary to insert in
(5.34) the previous solutions for 6(q;t), ®(a,t) in terms of the
functions @(N), ¥(N), C(N\) ard D(N) which must therefore be
chosen to satisfy together the resulting equation. This procedure
would be very complicated, however, owing to the expressions
for aq, Qt and the derivatives of A(q;t) invoked during the
substitution. Certain important consequences may be obtained
from a direct ccasideration of the general solutions for © and
® without any ‘urther regard to the conditions to be satisfied

by the four functions ¢, ¥, C, D, Therefore we shall not carry

the general theory any further but mereiy state that any solution

of a generalized simple wave must necessarily be of the form
predicted by equations (5.10), and (5.31).
Concurrent Parameter ILines. If the lines Qg vy =0

q
are concurrent through a fixed point, which without any restric-

tion may be taken to coincide with the origin r = O, then &
reduces to a function of time only and equations (95.26b) and

(5.34%) reduce to

¢Et 2K + (v - L)gd

q2 (y - 1) %Si'_qi = CI)+}S2

2 t

2 2
q~/L", therefore

Il

where, from (5.23), 32
q

2

.-C a2
b = 2 Y - L

L T IS T R e
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Inserting in thece expressions for @j ¢%t

A in teriws of 9(A), P(N\) as given by (5.15) gives

the values of L, K,

- 2 2 ., N 2
<b‘bt = [(Y + Lo + 2‘?)\ Ty = l)q"?)\)\](‘b = t)+2YCP(PX¢')\+(Y"1)¢ 4’)\)\

29 5
_ N -
O = 72q (O - 6+ vy |

Now assuming that A does not reduce to a finction of t only

(otherwise (5.,12) will give the contradiction that q is a function
of t) the above simultaneous expressions for @tt, which is a
function of t only, must simply be of the form (a + bt), a,b
being constants independent of A or t.

These give the four conditions, in terms of constants

(@sB) (y + 1)9° + 2¢§ +(y - Liggy, =«a
2ypydy, * Gy = Dby, =B

2¢i = (Y - Da

299y ¥y = (v - 1)B

These equations are clearly incompatible, The third gives at once

P = 0 and
an oy <1
ARY = e B A B

which enables the first to be reduced to

r =D
(v + l)-{wo + A vg-izl—-hJ +(y -1a =a

s A I o S il US| WA SR b
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along a series of stralght lines radiating from a fixed point,

However, this result says nothing about the possibility cf lines

cencurrent, through a moving point,

Oscillating Ficws. The principal possible application
of the preceding solution would be found if it were possible to
choose the fcour functions ¢, ¥, C, D in such a way that the time

variation of the deflection function €(g;t) was harmonic. Thus

consider a flat plate whose equation is written in terms of the
A
parameters a(t), n(t) (the unit normal vector) in the form
a+pr°*n=0 (5+35)

then the bcundary condition to te satisfied on this plate 1is

8
(.5%.+S-OV)(G+£$Q):O
giving . .
a+gen+z*n=0 (5.36)
In addition there is the field equaiion, valid everywhere,
&% *tr*a =0 (5.37)

In the first place it is noted that the line (%.35) cannot
instantaneously coincide with a parameter line of the family
(5.37), except for the case when (5.35) simply represents a
translational oscillation of the line with no pitching (i.e. n
= a constant vector), For otherwise (q,®) would not be constant
along such a line, as required by the boundary condition (5.36)

when n = C, Thus in the general case it is possible to eliminate

r from the equaticns (5.35), (5.36), and (5.37) to give

(% Rl
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® (n.n) = - a(QAg_q) +{a+n"* gq)n

If n = (cos a, sin a); o = a(t) = wt and

g = {q cos &, q sin ©)

then
gq = (cos & - qu sin 6, <cin © + qu cos )
Therefore
In q | = sin (& - wt) + g6 cos(6 - wt)
A=q q
e g=4q cos(e - wh)
équ = ~ wlcos(® - wt) - qu sin(6 - wt)]

the required condition (5.40) becomes

wdy = walcos(® - wt) - qusin(O - wt)]

- [; + q cos(® - wt)]-{sin(8 - wt) + qucos(G - wt)]

ow qu = giii:—il = cot(e - N)
q cos(® - N) = (¥ - t)
q sin(é - \) = L
and if a = a, sin wt then
w@q = wao[sin(e - 2wt) + qucos(O - 2wt)]

- q cos(@ - wt)lsin(e - wi) + qucos(G - wt)]

finally, on inserting q8, = cot(e - N,y

it

[EPDEGr
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cos(A - 2wt) - q
sin(e=\)

sin(@ - 2wt) + qucos(G Bt = cos(h = 2uwt)

o)

% cos(N - wt)

n

sin(@ - wt) + qucos(O - wt)

q cos(e- wt)=¢@ - t)cos(N\ - wt) - L sin(A - wt)

A i = = q
therefore since ¢h ®xlq QK(EZ)
- u@xbnl = wa cos{\ - 2ut) + cos(\ - ut) {¢(¢ - t)eos(\ =~ ut)
- L sin(\ ~ um)}
giving
- u@xA-l = [waocos A - % L sin 2\ + 2 o(d - t)cos2A] cos 2wt

d.
2
+ [waosin n o+ % L cos 2N + % p(P - t)sin 2A\]sin 2wt

+ Lo - t)  (5.41)

hN]|

Now having regard that the ex»ressions (Y.31) for & and (5.16)
for A are simply (finite) polynomials in the time with coeffi-
cients functions of X , a representation ot the type (5.41) for
¢ can only be possible if both the ractors of the sin 2wt,

cos 2wt terms vanish identically in A, It 1is clear that this
is never possible except in the trivial case ay = 9= 0, giving
also g =L =4 =0,

In the exceptional case when n = O then (5.35), (5.37)

give, since they must represent instantaneously coincident straight

lines,

1S

its

aq =

= a

where n is a fixed vector. Thnerefore q 1s parailel to a first

vector and the system of lines of constant velocity, lines (%5.37),
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censtitnte a system of lines perpendicular to the fixed direction
of g« The required expression for &(qjt) then reduces to, if

f£f(t) is an arbitrary function,

2
Slast) = - o o é_;a_%% + £(t)

Possilbe flows falling into this pattern are dealt with in the

next section,

64 arallel Parameter Lines, This section considers

the class of flows which fall into the analytic form g(M\;t) but
which vere automatically excluded in the analysis following
equation (5,10). Such flows will be shown to be characterized

by the velocity being constant along a series of parallel straight
lines parallel to a fixed direction, and the component of velocw-

ity in this direction 1s instantaneously constant throughout the

flow field and 1s a function of time only. These represent a very

restricted class of flows and it is concluded that the previous
analysls i1s always applicable, except in the present cases for
which the parameter lines degenerate into a system of parallel
lines, For completeness the present analysis shows the procedure
to be adopted in this special case,but details of the flows are
not discussed.

The analysis following (9.,10) was perforred on the
assumption that the arbitrary functiocn ¢(N) cccurring in (5.7)
did not reduce to a constant. Otherwlse it is not pessible to
take ¢<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>